Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(5): 143, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530548

RESUMO

Polystyrene (PS) is frequently used in the plastics industry. However, its structural stability and difficulty to break down lead to an abundance of plastic waste in the environment, resulting in micro-nano plastics (MNPs). As MNPs are severe hazards to both human and environmental health, it is crucial to develop innovative treatment technologies to degrade plastic waste. The biodegradation of plastics by insect gut microorganisms has gained attention as it is environmentally friendly, efficient, and safe. However, our knowledge of the biodegradation of PS is still limited. This review summarizes recent research advances on PS biodegradation by gut microorganisms/enzymes from insect larvae of different species, and schematic pathways of the degradation process are discussed in depth. Additionally, the prospect of using modern biotechnology, such as genetic engineering and systems biology, to identify novel PS-degrading microbes/functional genes/enzymes and to realize new strategies for PS biodegradation is highlighted. Challenges and limitations faced by the application of genetically engineered microorganisms (GEMs) and multiomics technologies in the field of plastic pollution bioremediation are also discussed. This review encourages the further exploration of the biodegradation of PS by insect gut microbes/enzymes, offering a cutting-edge perspective to identify PS biodegradation pathways and create effective biodegradation strategies.


Assuntos
Microbioma Gastrointestinal , Poliestirenos , Animais , Humanos , Poliestirenos/metabolismo , Plásticos , Biodegradação Ambiental , Insetos
2.
Chemosphere ; 351: 141173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232904

RESUMO

Azo dyes, as the most widely used synthetic dyes, are considered to be one of the culprits of water resources and environmental pollution. Anoxybacillus sp. PDR2 is a thermophilic bacterium with the ability to degrade azo dyes, whose genome contains two genes encoding azoreductases (named AzoPDR2-1 and AzoPDR2-2). In this study, through response surface methodology (RSM), when the initial pH, inoculation volume and Mg2+ addition amount were 7.18, 10.72% and 0.1 g/L respectively, the decolorization rate of methyl red (MR) (200 mg/L) could reach its maximum (98.8%). The metabolites after biodegradation were detected by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography mass spectrometry (LC-MS/MS), indicating that MR was successfully decomposed into 4-aminobenzoic acid and other small substrates. In homologous modeling, it was found that both azoreductases were flavin-dependent azoreductases, and belonged to the α/ß structure, using the Rossmann fold. In their docking results with the cofactor flavin mononucleotide (FMN), FMN bound to the surface of the protein dimer. Nicotinamide adenine dinucleotide (NADH) was superimposed on the plane of the pyrazine ring between FMN and the activity pocket of protein. Besides, both azoreductase complexes (azoreductase-FMN-NADH) exhibited a substrate preference for MR. Asn104 and Tyr74 played an important role in the combination of the azoreductase AzoPDR2-1 complex and the azoreductase AzoPDR2-2 complex with MR, respectively. This provided assistance for studying the mechanism of azoreductase biodegradation of azo dyes in thermophilic bacteria.


Assuntos
Anoxybacillus , NADH NADPH Oxirredutases , Nitrorredutases , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Anoxybacillus/metabolismo , NAD , Cromatografia Líquida , Espectrometria de Massas em Tandem , Compostos Azo/química , Corantes/metabolismo
3.
J Opt Soc Am A Opt Image Sci Vis ; 40(12): 2177-2186, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086026

RESUMO

Spurred by the continuous development of surface plasmon resonance (SPR) technology, optical fiber sensors based on SPR have become a research hotspot. Although single-mode fibers (SMFs) are simple and easy to manufacture, the sensitivity is quite poor. On the other hand, even though photonic crystal fibers (PCFs) and anti-resonant fibers (ARFs) can achieve high-sensitivity detection and the wavelength sensitivity is tens of times that of SMFs, they are complex and difficult to produce. Herein, an SPR refractive index sensor composed of micro-nano optical fibers (MNFs) is designed to detect analytes in the refractive index range between 1.33 and 1.43. Analysis by the finite element method (FEM) reveals that the maximum wavelength sensitivity is 49,000 nm/RIU. The SPR sensor boasting a simple structure, low cost, and high wavelength sensitivity has enormous potential in applications such as chemical analysis, environmental monitoring, and other fields.

4.
Int Immunopharmacol ; 105: 108576, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35121224

RESUMO

INTRODUCTION: Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder that causes severe physiological disturbance. Evidence showed that OSAHS is an important associated comorbidity that can affect the survival of patients with pulmonary fibrosis. Until now, the potential mechanisms by which OSAHS accelerates the progression of lung fibrosis remain unclear. By constructing a pathological model of chronic intermittent hypoxia (CIH), the present study aimed to explore the pathological progress and potential mechanism of lung injury caused by OSAHS. Meanwhile, SMND-309 was given for treatment to evaluate its potential therapeutic role in CIH-induced lung injury. METHODS: Mice were randomly divided into (C57BL/6 wild-type) WT+(room air) RA, WT + CIH, SMND-309 + RA, and SMND-309 + CIH groups. The WT + CIH and SMND-309 + CIH groups were exposed to CIH condition for 12 weeks, while the other groups were processed in normal oxygen at the same time. The SMND-309 + RA and SMND-309 + CIH groups were intraperitoneally injected with SMND-309 at the last week of the modeling period. After 12 weeks of treatment, three mice from each group were perfused through the heart. Lung tissues were isolated, fixed, sectioned, and stained with H&E, Masson, and immunofluorescence stain. The rest of the lung tissues were harvested for Western blot and ELISA assays. RESULTS: CIH treatment increased the expression of pro-inflammatory factors (TNF-α and IL-6), resulting in lung tissue structure disorder, inflammatory cell infiltration, increased pulmonary capillary permeability, and pulmonary edema. The activation of the NF-κB signaling pathway played a crucial role in the process of inflammation. Noticeably, we observed M2 macrophage accumulation in the lung after CIH exposure, which promoted epithelial-mesenchymal transition (EMT) and pulmonary tissue fibrosis. ELISA assays showed the increased expression of TGF-ß, IL-10, and IL-4 in the CIH group. SMND-309 inhibited pulmonary inflammation, reduced the accumulation of M2 macrophage, alleviated collagen deposition andlung damage. CONCLUSION: CIH could induce chronic lung inflammation, promote the activation of M2 macrophages, trigger the occurrence of EMT, and accelerate the deposition of lung collagen, eventually leading to lung tissue damage. This study presents a possible explanation by which interstitial lung diseases, particularly idiopathic pulmonary fibrosis (IPF) with OSAHS, are usually associated with fast progress and poor prognosis. SMND-309 showed a good protective effect on CIH-induced lung damage.


Assuntos
Lesão Pulmonar , Animais , Camundongos , Ácidos Cafeicos , Hipóxia/complicações , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...